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Abstract—WindSat has systematically collected the first global
fully polarimetric passive microwave data over both land and
ocean. As the first spaceborne polarimetric microwave radiometer,
it was designed to measure ocean surface wind speed and direction
by including the third and fourth Stokes parameters, which are
mostly related to the asymmetric structures of the ocean surface
roughness. Although designed for wind vector retrieval, WindSat
data are also collected over land and ice, and this new data has
revealed, for the first time, significant land signals in the third and
fourth Stokes parameter channels, particularly over Greenland
and the Antarctic ice sheets. The third and fourth Stokes param-
eters show well-defined large azimuth modulations that appear
to be correlated with geophysical variations, particularly snow
structure, melting, and metamorphism, and have distinct seasonal
variation. The polarimetric signatures are relatively weak in the
summer and are strongest around spring. This corresponds well
with the formation and erosion of the sastrugi in the dry snow zone
and snowmelt in the soaked zone. In this paper, we present the full
polarimetric signatures obtained from WindSat over Greenland,
and use a simple empirical observation model to quantify the
azimuthal variations of the signatures in space and time.

Index Terms—Greenland ice sheet, ice, polarimetric microwave
radiometry, snow, WindSat.

I. INTRODUCTION

FOR DECADES, microwave radiometry has proven to be
a valuable tool for polar research because of its high

sensitivity to the physical properties of snow. For example,
microwave emission is very sensitive to snow wetness; hence,
Abdalati and Steffen [1] and Mote and Anderson [27] used
microwave data to detect snowmelt over Greenland. Over dry
snow regions, snow and surface air temperatures have been
inferred from satellite radiometer data [32], [37], [42]. Grody
and Basist [18] and West et al. [45] also showed that snow
stratification can change microwave emission and its frequency
dependence. Abdalati and Steffen [2] and Flach et al. [12]
modeled the relationship between microwave emission and
snow accumulation/microstructure. The influence of hoar for-
mation on the emission was also demonstrated using ground
and satellite-based data [19], [25]. Shuman et al. [31] demon-
strated how to detect the formation of hoar with passive mi-

Manuscript received February 23, 2007; revised September 4, 2007. This
work was supported in part by the Office of Naval Research and in part by the
NPOESS Integrated Program Office.

L. Li, P. Gaiser, and E. M. Twarog are with the Naval Research Laboratory,
Washington, DC 20375 USA.

M. R. Albert is with Cold Regions Research and Engineering Laboratory,
Hanover, NH 03755 USA.

D. G. Long is with the Center for Remote Sensing, Microwave Earth Remote
Sensing Laboratory, Brigham Young University, Provo, UT 84602 USA.

Digital Object Identifier 10.1109/TGRS.2008.917727

crowave data, creating a reliable dating tool for snow pits and
ice cores, therefore improving the interpretation of ice core
paleoclimatic records. Recent studies also revealed correlations
between azimuthal modulation of microwave emission from the
Special Sensor Microwave/Imagers (SSM/I) and snow surface
roughness induced by winds [24].

The aforementioned work used heritage satellite microwave
radiometers, such as the SSM/I and the Advanced Microwave
Scanning Radiometer (AMSR), which measure only vertically
and horizontally polarized radiation. These two polarizations
represent the first two of the four elements of the radiometric
Stokes vector, which fully defines electromagnetic radiation.
The third and fourth components of the Stokes vector, rep-
resenting the cross correlation of the first two components,
were originally neglected because they were presumed to be
too small or zero at satellite footprint scales [38], [40]. How-
ever, several airborne radiometer campaigns over the ocean
demonstrated measurable (∼2.5 K maximum) third and fourth
Stokes parameters with signatures that are mostly related to
the asymmetric structures of the ocean surface roughness
[15], [30], [48]. Following this discovery, the U.S. Naval Re-
search Laboratory (NRL) developed and launched WindSat, the
first spaceborne polarimetric microwave radiometer, under the
sponsorship of the U.S. Navy and the National Polar-orbiting
Operational Environmental Satellite System [14]. Using the po-
larimetric signature over the ocean, WindSat has demonstrated
that it is indeed feasible to retrieve ocean surface vector winds
from a multifrequency polarimetric radiometer (e.g., [9]).

In addition to successfully retrieving ocean vector winds and
supporting new science in oceanography, the WindSat mission
has measured unexpected and unexplained polarimetric signals
(the third and fourth Stokes parameters) from Greenland and
Antarctica that are about eight times stronger than those from
the ocean. For example, Fig. 1 depicts all four modified Stokes
parameters collected from ascending and descending passes
at 18.7 GHz over the Northern Hemisphere for the period of
February 1–9, 2004. The strong third and fourth Stokes param-
eters stand out clearly and uniquely over Greenland against a
much weaker ocean and land background. Although the third
Stokes parameter shows a small (< 1 K) signal over land
elsewhere, over Greenland the third Stokes parameter varies
between −10 to 20 K, which is roughly eight times stronger
than the ocean polarimetric signal.

In this paper, we focus our analysis on WindSat data over
Greenland, characterizing its polarimetric signatures and their
associated temporal and spatial variations. We also discuss the
related surface and volume scattering theory related to these ob-
served signatures. The main purpose of this paper is to present
the unique polarimetric signatures of polar ice sheets uncovered
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Fig. 1. Composite WindSat polarimetric measurements at 18.7 GHz for the
four Stokes parameters collected by WindSat during February 1–10, 2003.

by WindSat and to stimulate new polar research activities in
areas of snow asymmetry structure and its interaction with
microwaves.

Fig. 2. Greenland map showing postulated locations of key ice facies [10] and
study site locations for WindSat data.

II. GREENLAND CLIMATOLOGY

As one of Earth’s two great ice sheets, the Greenland
ice sheet is an environmentally sensitive area that plays a
significant role in global sea level and climate change. The polar
firn contains records of both long- and short-term local climate
through the layering of the firn that is created by patterns of
snow deposition and of hoar complex formation. The firn phys-
ical properties control microwave emission, linking the sensor
data to environmental change in the polar region. The physical
properties of the snow and firn also control air–snow exchange
processes, which affect both the atmospheric chemistry
(e.g., [11]) and the chemical and physical content of the
firn that eventually becomes the ice core record (e.g., [4]).
Therefore, understanding the polarimetric signature, uniquely
afforded by WindSat, and its relationship to the snow properties
and microstructures could have a profound impact on climate
studies.

Based on snow metamorphism and melt, the Greenland ice
sheet can be subdivided into several distinct facies or zones
[10], [23]. These zones are shown in Fig. 2 and are defined
as follows. The dry-snow zone of the central Greenland, delin-
eated by the blue line in Fig. 2, experiences negligible snow
melt due to its high altitude and low physical temperature.
Nevertheless, snowpack diagenesis does take place, resulting
in growth in snow grain size and formation of a winter wind
slab. The annual accumulation in the dry snow zone is closely
related to precipitation and/or wind flow patterns. Down-slope
from the dry snow zone is the percolation zone where summer
melt water percolates down through the snowpack. In Fig. 2, the
percolation zone is depicted by the purple line. The melting and
refreezing cycle produces larger snow grains, ice lenses, pipes,
and layering. Further down-slope in the soaked or wet-snow
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zone delineated by the orange line, melt water saturated the
snowpack down to the previous summer surface. Such wet snow
in the summer generates thick layers of dense ice during the
refreezing in the fall. As a general rule, there is no significant
melting in the winter anywhere in Greenland.

The glacier exhibits a large range of surface roughness in var-
ious forms, such as sastrugi, which are indicators of air–snow
interaction and often can be detected by many high-resolution
remote-sensing sensors. Herzfeld [20] performed ice surface
classification based on image data such as synthetic aperture
radar. Germain et al. [15] and Nolin and Payne [29] extracted
surface roughness from the Multi-angle Imaging SpectroRa-
diometer (MISR) data. These data can be potentially useful
in interpreting rough surface effect on WindSat polarimetric
signatures.

The Greenland Climate Network (GC-Net) collects climate
information on Greenland’s ice sheet using automatic weather
stations (AWSs) [33]. Among them, we selected three station
locations in two different ice sheet zones, as shown in Fig. 2.
The Summit and North Greenland Ice-Core Project (NGRIP)
sites are both well studied and located inside the dry snow
zone, but have different snow characteristics. The JAR site is
within the soaked snow zone. These sites have very different
seasonal atmospheric temperature variations and different snow
properties that reflect changes in surface energy balance, as de-
scribed above, which result in significantly different emission/
scattering signatures in WindSat data.

III. WINDSAT INSTRUMENT AND DATA

The modified Stokes vector provides a full characterization
of electromagnetic radiation [38]. It is defined as
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where the first two Stokes parameters TV and TH are the
brightness temperatures of vertical and horizontal polarizations,
respectively. The third (U) and fourth (V ) Stokes parameters
represent the cross-correlational terms of vertical and hori-
zontal polarizations. The total radiated energy is represented
by I = TV + TH, while the linear polarization difference Q =
TV − TH, together with U and V , describes fully the polarized
components. In the past, Q was often referred as polarization
difference and used extensive to represent polarized nature of
natural radiation. U and V were generally assumed to be zero
and neglected in microwave radiometry [38], [40]. For decades,
satellite microwave radiometers, including SMMR, SSM/I, and
AMSR-E, have been measuring the first two components for
many science applications, neglecting the third and fourth
components.

As a fully polarimetric microwave radiometer, WindSat mea-
sures all four parameters of the modified Stokes vector at 10.7,
18.7, and 37.0 GHz, along with TV and TH at 6.8 and 23.8 GHz.
The conically scanned WindSat has a forward swath of about
1000 km and a 53◦ Earth incidence angle (EIA). The 830-km
orbit is sun synchronous with ascending equatorial crossings at
6:00 P.M. local time.

In the standard WindSat Sensor Data Record (SDR) prod-
ucts, all the brightness temperatures of different frequencies are
resampled and beam-averaged to a common spatial resolution
of approximately 40 km by 60 km (the approximate 6-GHz
ground footprint). We then bin the SDR swath data onto the
25-km Northern and Southern Hemispheres EASE-grid and
compile them into separate daily ascending and descending
data files. A time series of brightness temperature data are then
extracted from the EASE-Grid data for the selected Greenland
sites. In this paper, we use two years of WindSat data from
February 2003 to January 2005.

IV. AZIMUTHAL MODULATION MODELING

A random medium is reflection symmetric if, for any re-
alization of the medium permittivity and permeability, there
is another realization that is a mirror image to the former
realization. For example, a wind roughened ocean surface can
be regarded as reflection symmetric with respect to the wind
direction. In general, the signatures of the U and V are directly
related to the reflection symmetry of the target media. Using
a reflection operator for Maxwell’s equations, Yueh et al. [47]
showed that, if a random medium is reflection symmetric about
an azimuthal plane, TV and TH are even (i.e., cosine) functions
of azimuthal direction, while U and V are odd (i.e., sine)
functions. For a random medium with no preferred azimuthal
orientation, the reflection symmetry holds for any azimuthal
plane. In this case, the U and V can be shown to be zero.
U and V respond most strongly to the azimuthal asymmetry
structure of the snowpack and, thus, are strong functions of
the observation geometry. TV and TH respond mostly to the
dielectric properties and temperature of the snow/firn. When
analyzing U and V , it is essential to account for the azimuth
modulations to separate the observation geometry effects from
environmental variations. Then, we can examine the changes
in the microwave signature to infer the temporal and spatial
variations in the physical properties of the ice sheet. A simple
and effective way to define the microwave signature is to con-
struct an empirical observation model with a small number of
model parameters that can account for the signature variability
and separate different effects in the measurements.

Given the constant EIA of the WindSat conical scanning
geometry, U and V over Greenland are functions of satel-
lite azimuth look angle (observation geometry) and ice-sheet
characteristics [5]. We thus adopt the following simple empiri-
cal observation model for the polarimetric emissions:

[
U
V

]
=

[
U0 + U1 sin(φ − φ1) + U2 sin 2(φ − φ2)
V0 + V1 sin(ϕ − ϕ1) + V2 sin 2(ϕ − ϕ2)

]
(2)

where φ is the compass azimuth observation angle at the
pierce point (φ = 0◦ points to the north, φ = 90◦ points to
the east); {Ui} and {V i} are the coefficients of the azimuth
modulation, and {φi} and {ϕi} are the orientations of different
harmonics. The first harmonic coefficients U1 and V1 describe
the emission signatures that are related to the 180◦ asymmetry
structures of the snowpack. The second harmonic coefficients
U2 and V2 represent the 90◦ asymmetry structures. For the more
familiar case of ocean surface scattering, the 180◦ asymmetry is
induced by the asymmetric surface features on the leeward and
windward faces of large-scale waves, while the 90◦ asymmetry
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Fig. 3. Four Stokes parameters at 10.7 GHz observed by WindSat over the
Summit study site in Greenland during April 2003. The solid line is the fitted
second-order harmonic model. See text for discussion.

is due to the difference in surface roughness between upwind
and crosswind directions. For the case of firn, combined surface
roughness and volume scattering from snow dunes and sastrugi
can produce similar 180◦ and 90◦ asymmetry structures [24].

Our approach is to examine the temporal variations of the
model coefficients (2) of WindSat polarimetric data at different
locations in Greenland. Signatures in vertical and horizontal po-
larization channels, as well as AWS in situ data, are included for
comparison to illustrate the new information content in the po-
larimetric channels. Because the dry snow zone characteristics
change slowly over Greenland, we estimate the model parame-
ters using a 30-day time window and intervals. Measurements
from both ascending and descending passes are combined in the
estimations. For wet snow zone, the melt signal is very strong
and rapid, and it dominates the data point before the onset of
the melt. Thus, our observation data model can still capture the
dynamics of the polarimetric signature well on monthly time
scales, although the model error will increase slightly.

V. RESULTS

A. Azimuthal Modulation Over Dry-Snow Zone

Scatter plots of 10.7-GHz brightness temperatures versus
azimuth look angles are shown in Fig. 3 for the month of
April 2003. The azimuthal angle is defined as the compass
azimuth angle of the radiometer antenna beam at the pierce
point of the Earth’s surface. The measurements are extracted
from the WindSat EASE-Grid data set near the Summit site.
Each data point represents a single satellite overpass with no
binning or averaging performed in the azimuthal direction.
The measurements centered on 210◦ correspond to satellite
descending passes at approximately 7:30 A.M. local time; while
the measurements around 340◦ are from ascending passes near
4:30 P.M. local time.

Fig. 4. Time series of WindSat observations over the Greenland Summit study
site from April 1, 2003 to December 30, 2004. The 10.7-, 18.7-, and 37.0-GHz
data are color coded with black, purple, and blue, respectively. (a) In situ air and
snow temperature. A 30-day running average is applied to the air temperature
to delineate its trend and minimize short-term diurnal and storm fluctuations.
(b) Vertically polarized brightness temperature of descending orbits.

The top left panel in Fig. 3 shows 10.7-GHz vertical polariza-
tion brightness temperatures. There is an asymmetric brightness
temperature difference of about 2 K between ascending and
descending passes with less than 1 K of scatter in the data. This
2 K difference is not likely a diurnal effect because 10.7-GHz
radiation has a snow penetration depth of more than 10 m,
while the hourly sampled snow temperature varies very slowly
with time, even at 1-m depth [as shown in Fig. 4(a)]. We note
that in the horizontal polarization plotted in the top right panel,
scatter in the data are large, more than 8 K, which overwhelms
any similar small azimuthal modulations on the order of 1–2 K.
The large scatter in horizontal brightness temperatures and
the relatively small dynamic range in vertical polarization are
consistent with previous theoretical and experimental studies
[13], [31].

In sharp contrast to TV and TH, the bottom panels showing
10.7 GHz U and V observations reveal well-pronounced az-
imuthal dependencies, both within and between the passes. The
scatter in the data are much less than TH and comparable to
the scatter in TV. However, there are clearly azimuthal depen-
dencies within the 290◦ to 360◦ azimuth angles of ascending
passes, while TV shows azimuthal dependencies only between
ascending and descending passes. The peak-to-peak signals
of the azimuthal modulations are also much larger, about 7
and 18 K for U and V , respectively. This is a unique and
extremely strong signal compared to either the ocean or other
land areas. Although the azimuth sampling range is limited,
the data fit the empirical second-order harmonic model in (2)
very well, as depicted by the solid lines. We also fit the model
to WindSat U and V data from different months and obtained
similar azimuthal modulation signals, indicating that WindSat
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polarimetric data can be well modeled using the second-order
harmonic model.

In addition to the strong azimuthal signal, a striking signature
of the Greenland polar firn is its stronger V signals relative
to U . Fig. 1 shows that such a signature exists for most part
of Greenland. This unique signature has never been observed
in nature before and cannot be explained by surface scattering
alone. Tsang [39] formulated a theory for passive microwave
polarimetry for the case of discrete scatterers and rough sur-
face scattering. Using vector radiative transfer simulations, he
showed that U and V can be very significant if the discrete scat-
terers have certain statistical asymmetrical configurations. He
also suggested it is possible to retrieve information concerning
particle orientation distribution from the U and V . Following
these studies, polarimetric signatures of 1-D rough soil surfaces
and 2-D asymmetrical surfaces were also investigated using
an integral equation approach [22], [43]. In addition, fully po-
larimetric two-scale models were developed for ocean surface
scattering and compared with experiment data (e.g., [15], [48],
and [49]). Except for the volume scattering model developed
by [39], all ocean and land surface scattering models predicted
a much weaker fourth Stokes parameter. Exploring this strong
polarimetric signature could potentially open a new area of
microwave remote sensing of the cryosphere.

B. Temporal Variation of Dry-Snow Zone

1) Summit Site: Fig. 4(a) plots time series of in situ air
temperature at 1-m height and snow temperature at 1-m depth
extracted from the GC-Net AWS stations at the Summit site.
A 30-day running average is applied to the air temperature
to delineate its trend and minimize short-term diurnal and
storm fluctuations. Note that no running average was applied
to snow temperature at 1-m depth, since it shows very little
fluctuation and minimal temporal or seasonal variation. At this
site, snow accumulation events occur throughout the year. The
total accumulation is about 65 cm/year.

In the dry snow region of Greenland, TV and TH are very
sensitive to the effective physical temperature of the dry firn
[37], [50]. Fig. 4(b) shows time series of WindSat vertically
polarized brightness temperatures over the Summit site for
the 10.7-, 18.7-, and 37-GHz channels. Clearly, the WindSat
measurements follow the general seasonal variations of in situ
air or snow physical temperatures, although the different fre-
quencies peak at different times. For example, the 10.7-GHz
data peak about early September (Day 245 and 600), while the
18-GHz data peak about five days earlier than 10-GHz data.
This phase difference between the two peaks is due to the
different penetration depths at the different frequencies [37].
In summer, there is a temperature gradient in the snow due
to the warming of near-surface layers, while the deeper layers
are still cold from the previous winter. The 37-GHz brightness
temperatures respond more closely to the air temperature due to
its shallower penetration depth whereas because of its greater
penetration depth, the 10.7-GHz data correspond more closely
to the snow temperature at depth. For example, there is no
clear summer maximum from June to August (days 150 to
220) for air temperature, but there are two local maximums
at days 175 and 240. A more distinct structure is the short-
term air temperature increase around day 290. All of these air
temperature variation features are evident in the 37-GHz data

but are not reproduced in the 10.7- and 18.7-GHz data, which
are more correlated with deeper snow temperatures.

Fig. 5(a)–(d) shows time series of WindSat first (U1 and V1)
and second (U2 and V2)-order harmonic coefficients of (2) at
the Summit study site. Each coefficient data point is derived
using a 30-day time window, as discussed in Section IV. The
U and V harmonics at 10.7-, 18.7-, and 37-GHz channels are
included and color-coded in the plots. Overall, the harmonic
coefficients of both U and V can reach as high as 10 K
individually, or 20 K for combined first and second harmonics,
which is the total signal measured by radiometer and is very
large compared to the azimuthal variations observed over the
ocean. Well-pronounced seasonal variations are evident in most
harmonic coefficients, except for the second harmonic of the U
in Fig. 5(c). For all three frequencies, the V signals are about
the same strength as the U over Greenland. As discussed earlier,
this is in striking contrast to a weaker V signatures generated by
ocean surface scattering. In general, all harmonic coefficients
increase starting early winter and peak in spring or early
summer, and remain close to their minimums during summer
and fall. The first harmonics peak near mid-April [Fig. 5(a)] and
early June [Fig. 5(b)] for U and the V , respectively, which sug-
gests that 180◦ asymmetry snow structures affect the U and V
differently. Similarly for V , there is an offset between the sec-
ond peak in Fig. 5(b) (around day 530, as indicated by line A)
for the first harmonic, and in Fig. 5(d) (about day 470, as
indicated by line B) for the second harmonic. This suggests that
the 180◦ and 90◦ asymmetrical structures change differently to
impact the fourth Stokes parameter.

The seasonal variations demonstrated in Fig. 5 reflect
changes in snow characteristics. The significant impacts of the
surface roughness on the first two modified Stokes parameters
have been well studied in the past. Therefore, it is important to
understand the surface roughness effects on the third and fourth
Stokes parameters. Albert and Hawley [3] analyzed surface
roughness data collected at the centimeter-to-meter scale during
the winter-over experiment in 1998 at Summit, Greenland.
They found that the change in surface roughness is related to
the winter formation and summer erosion of sastrugi, which
are the most visible asymmetrical features over polar firn. The
snow accumulates through episodic snowfall events, and the
wind subsequently erodes it into rough features and sastrugi
during times of high winds and cold temperatures. The dune
crests are oriented orthogonally to the wind direction, while
the sastrugi are oriented parallel to the wind direction. They
become more level during the summer by sublimation and
deflation [16], [17]. Albert and Hawley [3] showed that surface
roughness heights are less than 8 cm from late June to later
December but started to increase around January. From January
to March, the surface roughness became up to 25 cm. Such a
temporal signature in the surface roughness is very consistent
with seasonal variations of harmonic coefficients in Fig. 5, as
discussed in previous paragraph. However, it is necessary to
point out that such a consistency does not suggest that surface
scattering by sastrugi is the mechanism that produces the strong
polarimetric signatures. Numerical simulations of ocean [49]
and snow [46] surfaces all indicate that rough surface scattering
alone cannot produce large polarimetric signature, particularly
the fourth Stokes parameter. Although rigorous theoretical and
experimental studies are needed to determine the exact physics
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Fig. 5. Time series of WindSat observations over the Greenland Summit
study site from April 1, 2003 to December 30, 2004. The 10.7-, 18.7-, and
37.0-GHz data are color coded with black, purple, and blue, respectively.
(a) First harmonic of U . (b) First harmonic of V . (c) Second harmonic of U .
(d) Second harmonic of V .

behind the observation, it is possible that the WindSat U and V
data respond to the coupled volume and surface scattering as-
sociated with asymmetry structures of polar firn microstructure
and rough surfaces.

In addition to their sensitivity to snowpack temperatures,
brightness temperatures also depend on the snow microstruc-
ture (grain size, shape, and arrangement and nature of bonds),
accumulation, stratification, and surface roughness. For exam-
ple, Fig. 6 plots time series of the ratio of vertical and horizontal
polarized brightness temperatures (termed the TV/TH ratio),
which is much less sensitive to physical temperature variations
than brightness temperatures themselves but still has signifi-
cant variations on both weekly and seasonal time scales that
are not correlated with temperature variations. The modified
Q (TV − TH) is also plotted in Fig. 6 for comparison and shows
similar structures. There are sustained progressive declines of
the TV/TH ratio from April to mid-July 2003 (day 100 to 200,
as indicated by label “A”), and from February to mid-May
2004 (day 400 to 500, as indicated by label “B”). The TV/TH

ratio rises subsequently outside these two declining periods.
Using observations from the Greenland Ice Sheet Project II
site, [31] attributed the summertime decreases in SSM/I
37 GHz TV/TH ratio to the decreases in near surface density
and increases in centimeter-scale surface roughness, which are
created by intense insolation and periodic surface temperature
change that cause the formation of coarse-grained summertime
hoar complex. Such conclusion should apply to WindSat data
also, since WindSat was built on SSM/I heritage and nearly
the same center frequency and incidence angle for the 37-GHz
channels [14]. Additional discuss on the summertime variation
in TV/TH for firn are contained in [26].

Similar to the TV/TH ratio, the U and V signals are ex-
pected to be much less sensitive to snow temperatures than
to microstructures of snow. If we refer to the variation of the
signal strength or sensitivity with frequency as the “spectral

Fig. 6. Time series of WindSat TV/TH ratio of descending orbits observa-
tions over the Greenland Summit study site from April 1, 2003 to December 30,
2004. The 10.7-, 18.7-, and 37.0-GHz data are color coded with black, purple,
and blue, respectively.

signature,” the U and V show very different spectral signatures
than the TV/TH ratio. For example, Fig. 6 shows that TV/TH

ratios of the lower frequencies at 10.7 and 18.7 GHz are
stronger than the ratio at 37 GHz; while Fig. 5(d) shows that
the 18.7- and 37-GHz channels fourth Stokes parameter second
harmonics are stronger than at 10 GHz. The second harmonic of
the third Stokes parameter shows lower sensitivity to frequency
than any of the other harmonics. These differences between
the TV/TH ratios and polarimetric channels, along with their
differences in seasonal variations represent new information
available from polarimetric passive microwave data. They can
also serve as additional validation to theoretical models, which
now must be consistent with not only TV and TH, but also U
and V . Although the TV/TH ratio has been used effectively to
identify hoar formation events in summertime, it does not pro-
vide sufficient constraints to differentiate snow parameters, and
therefore, no accurate model has yet been developed to quan-
titatively estimate hoar amount and snow accumulation [2].
Inclusion of the polarimetric observations can provide the addi-
tional constraints to help separate snow parameters.
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Fig. 7. Time series of WindSat observations over NGRIP site from April 1,
2003 to December 30, 2004. The 10.7-, 18.7-, and 37.0-GHz data are color
coded with black, purple, and blue, respectively. (a) First harmonic of U .
(b) First harmonic of V . (c) Second harmonic of U . (d) Second har-
monic of V .

Another way to examine the new information content is to
compare the spatial distribution of the first two modified Stokes
parameters against the third and fourth Stokes parameters.
Fig. 1 shows that the spatial patterns of U and V are very
different from TV and TH. In contrast, TV and TH have very
similar patterns and are highly correlated. In other words, there
is significant decorrelation or new information content in the
polarimetric channels.
2) NGRIP Site: It is necessary to test the repeatability and

examine the spatial variations of WindSat polarimetric signa-
ture in the dry-snow zone. Moving downslope to the northeast
region of the dry-snow zone at the NGRIP site as shown in
Fig. 2, the snow accumulation is about 40 cm/year. While
the Summit and NGRIP sites are separated by only about
300 m in elevation, the NGRIP climatological summer air
temperatures are a few degrees warmer than at the Summit,
which leads to relatively larger mean snow grain size [23].
Long and Drinkwater [23] analyzed Seasat-A scatterometer
data over the Greenland and showed that the volume scattering
is significantly stronger in the northeast region (covering the
NGRIP site) than at the Summit. Therefore, it is reasonable to
expect differences in WindSat data between these two sites.

Fig. 7 provides charts similar to Fig. 5 but at the NGRIP
site. All Stokes parameters have similar seasonal variations as
at the Summit site, but there are indeed significant differences
in the spectral signatures from these two sites. Again, the
U signals are relatively weak during the summer and stronger in
late winter and early spring, which is similar to the polarimetric
signatures at the Summit in Fig. 5. However, the V signals
are strong during all seasons except summer. The V signal
at the NGRIP site is even stronger than the U , but is com-
parable to the V signal at the Summit. The second harmonic
of U has a stronger signal and a distinct seasonal variation
at NGRIP [Fig. 7(c)], while it is relatively small and flat at
the Summit [Fig. 5(c)]. In addition, frequency dependencies

Fig. 8. Time series of WindSat observations over the JAR study site on
Greenland from April 1, 2003 to December 30, 2004. The 10.7-, 18.7-, and
37.0-GHz data are color coded with black, purple, and blue, respectively.
(a) In situ air and snow temperature. (b) Vertically polarized brightness tem-
perature of ascending orbits. (c) Vertically polarized brightness temperature of
descending orbits. The symbol “M” indicates melting period, and “S” suggests
strong volume scattering.

Fig. 9. Time series of WindSat observations over the JAR study site on
Greenland from April 1, 2003 to December 30, 2004. The 10.7-, 18.7-, and
37.0-GHz data are color coded with black, purple, and blue, respectively.
(a) First harmonic of U . (b) First harmonic of V . (c) Second harmonic of U .
(d) Second harmonic of V .
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of these two sites are different for the second harmonic of V
[Figs. 5(d) and 7(d)]. The similarity in polarimetric signatures,
and their seasonal variation, between these two sites confirms
the repeatability of WindSat measurements. On the other hand,
the observed differences in the polarimetric signatures provide
opportunities to study snowpack structures.

C. Temporal Variations of Wet-Snow Zone

Microwave emission is very sensitive to snow wetness, and
microwave radiometer data have been used to detect snowmelt
over Greenland [1], [6], [7], [27]. For dry snow, volume scat-
tering dominates the emission signatures due to the relatively
small extinction coefficient and large scattering albedo. How-
ever, with even a very small amount of liquid water present in
the snowpack, the scattering albedo is dramatically reduced to
a very small value, and the large change in dielectric properties
limits the penetration depth to a few wavelengths beneath
the surface. With the near absence of volume scattering in
the snow medium, the snowpack approaches the nonscattering
characteristics of a nearly blackbody radiator [41]. To examine
melting signatures, we extracted a time-series of WindSat data
near the JAR site (69.50 ◦N, 49.68 ◦W) in the wet-snow zone,
which is only about 16 km away from well-studied Swiss Camp
site (69.57 ◦N, 49.32 ◦W). Abdalati and Steffen [1] used this
Swiss Camp site to develop an SSM/I snowmelt algorithm
for Greenland, and it will be interesting to use the same site
to analyze WindSat data. However, there is a significant data
gap in 2003 and 2004 for the Swiss Camp site due to an
AWS instrument malfunction. Because of this data gap, we
opted to use the JAR site for our analysis. Fortunately, the data
from the two sites are very close for air and snow temperature
measurements. Fig. 8(a) plots time-series of air temperature at
1-m height and snow temperature at 1-m depth, and WindSat
vertically polarized brightness temperatures for ascending and
descending passes.

From June to September [day 150 to 250, as indicated by
“M” for melting period in Fig. 8(a) and (b)], the air and snow
temperatures are quite stable with a mean of about 272 K and
a diurnal variation of about 5 K. In Fig. 8(b), for ascending
passes (4:30 P.M. local time), the brightness temperatures of the
three frequencies are all quite stable approaching 267 K and are
essentially frequency independent, a feature of strong snowmelt
signature. For the descending passes (7:30 A.M. local time), re-
freezing of the wet or saturated snowpack generates larger snow
grains, dries the snow, and enables much deeper penetration. As
a result, volume scattering dominates the signature, as indicated
by the very large difference (up to 70 K) between 18.7- and
37-GHz channels near the label “S” in Fig. 8(c).

As was the case for the dry zone sites, the polarimetric
signatures shown in Fig. 9(a)–(d) for the JAR site are significant
and exhibit well-defined seasonal variations. Polarimetric sig-
natures at all frequencies are very weak in the summer (day 150
to 250 and 500 to 600), and are the strongest in late March
(around 450). This means that the polarimetric harmonics drop
quickly and significantly to about 1 K or lower when melting
starts, and slowly increase once refreezing begins. Volume scat-
tering is strongest during the summer when refreezing occurs
at night during descending passes [as indicated by the “S” in
Fig. 8(c)]. However, the very strong volume scattering does not
produce a very strong polarimetric signal, probably because

the ice crystals generated through melt/freeze cycling do not
exhibit a strong azimuthal variation.

In general, the overall polarimetric signal strength is weaker
for this wet-snow site than the dry-snow sites and, as shown in
Fig. 9(c), the U second harmonic amplitude is always small.
Another interesting feature is that the 18.7- and 37-GHz Stokes
parameters are reduced much more, relative to the dry snow
sites, than 10.7 GHz. One possible cause is that the melting
and refreezing cycle reduces asymmetric structures through
recrystallization near the surface, coincident with the 18.7- and
37-GHz penetration depths. Such metamorphic changes do not
have a directional preference, reducing the general asymmetry
of the firn structure. However, at the greater penetration depths
of 10.7-GHz radiation, this process has much less impact.
Further coordinated field, laboratory, and modeling work are
necessary to fully understand these features.

VI. SUMMARY

The four parameters of the Stokes vector provide a full
characterization of polarization. The first and second modified
Stokes parameters (TV and TH) have broad science applications
and are widely used in microwave radiometry. All previous
passive microwave satellite sensors measured only the first
two modified Stokes parameters. Tsang [39] showed theoret-
ically that random media of asymmetry structures can pro-
duce large polarimetric microwave signatures of the third and
fourth Stokes parameters through volume and surface scattering
[22], [43]. Subsequent ocean experimental studies observed
significant third Stokes parameter (up to ∼2.5 K), but the
fourth Stokes parameter is much smaller [48]. WindSat, the
first spaceborne polarimetric microwave radiometer, detected,
for the first time, distinct and strong third and fourth Stokes
parameter signals up to 15 K over the polar region. In addition,
WindSat data contain fourth Stokes parameters that are larger
than the third Stokes parameters, also for the first time in nature.
The polarimetric signature exhibits distinct geophysical and
observation geometry signatures, which are related to asym-
metrical structures of polar ice sheets, including possibly the
millimeter-scale snow crystals, meter-scale surface roughness,
and up to kilometer-scale moulins and crevasses. The third
and fourth Stokes parameters have well-defined large azimuthal
modulations and significant seasonal variations, which reflects
geophysical variations in snow microstructure, melting, and
possibly snow surface roughness. We used a second-order
data observation model to separate and quantify the azimuthal
modulation and extract polarimetric signature variations due to
geophysical changes. The model data fit the observations very
well. The extracted polarimetric signatures are relatively weak
in the summer and are strongest near spring. This corresponds
well with the formation and erosion of the sastrugi in the dry
snow zone and snowmelt in the soaked zone. It is possible
that the WindSat U and V data respond to the coupled volume
and surface scattering associated with asymmetry structures of
polar firn microstructure and rough surfaces.

Remote sensing data have long been used to study the
roughness surface scattering by the asymmetry structure of sas-
trugi. For example, Ledroit et al. [21] attributed the azimuthal
modulation of normalized radar cross-sectional measurements
to sastrugi and correlated such a modulation with the katabatic
wind direction. Ashcraft and Long [8] assume that snow surface
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roughness at the 3–300-m scales are the primary mechanism
driving the modulation, and developed successfully an ERS
scatterometer model to extract the azimuthal modulation and
surface snow properties. When compared with normalized
radar cross-sectional data, the WindSat third and fourth Stokes
parameters are the only satellite measurements that respond pri-
marily to the asymmetry structures of polar snow and show very
clean azimuthal modulations. In addition, the fourth Stokes
parameter responds solely to the snow microstructure at the
centimeter wavelength scales and can be used to separate snow
large- and small-scale structures. In the subsequent research, we
will explore similar applications for WindSat and compare the
active scatterometer and passive radiometer results. Similarly,
in the optical band, Warren et al. [44] examined the angular pat-
tern of sunlight reflection by snow surface and demonstrated the
significant impacts by oriented sastrugi for large incidence an-
gles. Nolin et al. [28] take advantage of the MISR multiangular
data and defined a normalized difference angular index which is
correlated with surface roughness on the scale of 70 m. A future
comparison of MISR surface roughness maps [29] with Wind-
Sat data, both spatially and temporally, can help us to under-
stand the impact of surface roughness on polarimetric signals.
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